Engineering of carbon distribution between glycolysis and sugar nucleotide biosynthesis in Lactococcus lactis.

نویسندگان

  • Ingeborg C Boels
  • Michiel Kleerebezem
  • Willem M de Vos
چکیده

We describe the effects of modulating the activities of glucokinase, phosphofructokinase, and phosphoglucomutase on the branching point between sugar degradation and the biosynthesis of sugar nucleotides involved in the production of exopolysaccharide biosynthesis by Lactococcus lactis. This was realized by using a described isogenic L. lactis mutant with reduced enzyme activities or by controlled expression of the well-characterized genes for phosphoglucomutase or glucokinase from Escherichia coli or Bacillus subtilis, respectively. The role of decreased metabolic flux was studied in L. lactis strains with decreased phosphofructokinase activities. The concomitant reduction of the activities of phosphofructokinase and other enzymes encoded by the las operon (lactate dehydrogenase and pyruvate kinase) resulted in significant changes in the concentrations of sugar-phosphates. In contrast, a >25-fold overproduction of glucokinase resulted in 7-fold-increased fructose-6-phosphate levels and 2-fold-reduced glucose-1-phosphate and glucose-6-phosphate levels. However, these increased sugar-phosphate concentrations did not affect the levels of sugar nucleotides. Finally, an approximately 100-fold overproduction of phosphoglucomutase resulted in 5-fold-increased levels of both UDP-glucose and UDP-galactose. While the increased concentrations of sugar-phosphates or sugar nucleotides did not significantly affect the production of exopolysaccharides, they demonstrate the metabolic flexibility of L. lactis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional analysis of the Lactococcus lactis galU and galE genes and their impact on sugar nucleotide and exopolysaccharide biosynthesis.

We studied the UDP-glucose pyrophosphorylase (galU) and UDP-galactose epimerase (galE) genes of Lactococcus lactis MG1363 to investigate their involvement in biosynthesis of UDP-glucose and UDP-galactose, which are precursors of glucose- and galactose-containing exopolysaccharides (EPS) in L. lactis. The lactococcal galU gene was identified by a PCR approach using degenerate primers and was fou...

متن کامل

Relationship between glycolysis and exopolysaccharide biosynthesis in Lactococcus lactis.

The relationships between glucose metabolism and exopolysaccharide (EPS) production in a Lactococcus lactis strain containing the EPS gene cluster (Eps(+)) and in nonproducer strain MG5267 (Eps(-)) were characterized. The concentrations of relevant phosphorylated intermediates in EPS and cell wall biosynthetic pathways or glycolysis were determined by (31)P nuclear magnetic resonance. The conce...

متن کامل

Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris By the sugar source.

Lactococcus lactis produced more exopolysaccharide (EPS) on glucose than on fructose as the sugar substrate, although the transcription level of the eps gene cluster was independent of the sugar source. A major difference between cells grown on the two substrates was the capacity to produce sugar nucleotides, the EPS precursors. However, the activities of the enzymes required for the synthesis ...

متن کامل

Lactococcus lactis as a cell factory for high-level diacetyl production.

We report the engineering of Lactococcus lactis for the efficient conversion of sugar into diacetyl by combining NADH-oxidase overproduction and alpha-acetolactate decarboxylase inactivation. Eighty percent of the carbon flux was found to be rerouted via alpha-acetolactate to the production of diacetyl by preloading the cells with NADH-oxidase before their use as a cell factory.

متن کامل

Differential expression of proteins and genes in the lag phase of Lactococcus lactis subsp. lactis grown in synthetic medium and reconstituted skim milk.

We investigated protein and gene expression in the lag phase of Lactococcus lactis subsp. lactis CNRZ 157 and compared it to the exponential and stationary phases. By means of two-dimensional polyacrylamide gel electrophoresis, 28 highly expressed lag-phase proteins, implicated in nucleotide metabolism, glycolysis, stress response, translation, transcription, cell division, amino acid metabolis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 69 2  شماره 

صفحات  -

تاریخ انتشار 2003